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SHEAR-FLEXIBLE FINITE-ELEMENT MODELS OF LAMINATED 

COMPOSITE PLATES AND SHELLS 

Ahmed K.  Noor* and Michael D. Mathers" 
Langley Research Center 

SUMMARY 

Several finite-element models are applied to  the linear static, stability, and vibration analy- 
The study is based on linear shallow-shell theory, sis of laminated composite plates and shells. 

with the effects of shear deformation, anisotropic material behavior, and bending-extensional 
coupling included. 
Discussion is focused on the effects of shear deformation and anisotropic material behavior on 
the accuracy and convergence of different finite-element models. Numerical studies are pre- 
sented which show the effects of (a) increasing the order of the approximating polynomials, 
(b) adding internal degrees of freedom, and (c) using derivatives of generalized displacements 
as nodal parameters. 

Both stiffness (displacement) and mixed finite-element models are considered. 

IbJTRODUCTION 

Although the finite-element analysis of isotropic plates and shells has received considerable 
attention in the literature, investigations of laminated composite plates and shells are rather 
limited in extent. 
fibrous composite plates and shells often requires inclusion of the transverse shear effects in 
their mathematical models. This fact has been amply documented for linear static, stability, 
and dynamic problems. (See, for example, refs. 1 to  5 . )  

The reliable prediction of the response characteristics of high-modulus 

At present there are three approaches for developing plate and shell finiteelement models 
which account for shear deformation. 
dimensional isoparametric solid elements which automatically include the shear-distortion mecha- 
nism (refs. 6 and 7). The second approach employs two-dimensional elements used with inde- 
pendent shape (or interpolation) functions for displacements and rotations (refs. 8 and 9). The 
third approach is based on the addition of effects of shear deformation to two-dimensional 
classical plate or shell elements through the use of equilibrium equations (refs. 10 and 11). 
Although it is desirable to  have an element which gives accurate results regardless of how 
important the shear deformation is, most of the existing elements do  not satisfy this 
requirement. 

The first approach is based on the use of three- 

. 
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In the context. of the stiffness method, the first approach has the major disadvantage 
that it leads to a stiffness matrix which is (1) very large for laminated composites consisting 
of many layers and (2) highly ill conditioned for thin plates or shells. 
tion polynomials are used, the second approach leads to overly stiff elements for very thin 
plates and shells. Although the aforementioned drawbacks have been recognized and some 
improvements have been suggested, the difficulties have not been overcome. 
refs. 12 to 17.) The range of validity of the third approach has not been explored. Since 
the second approach provides flexibility and simplicity in fulfilling the interelement compati- 
bility conditions and does not result in as large a stiffness matrix as in the first approach, it 
was adopted in the present study. 

If low-order interpola- 

(See, e.g., 

The first objective of this paper is to assess the relative merits of a number of displace- 
ment and mixed shear-flexible finite elements when applied to  the linear static, stability, and 
vibration problems of laminated plates and shells. Emphasis is focused on the effects of shear 
deformation and anisotropic material behavior on the accuracy and convergence of the different 
models. The second objective is t o  study the effects of increasing the order of approximating 
polynomials, adding internal degrees of freedom, and using derivatives of generalized displace- 
ments as nodal parameters on the accuracy and rate of convergence of the different models. 
To the authors’ knowledge no publication exists in which the aforementioned effects are 
studied in any detail. 

The analytical formulation is based on a form of the shallow-shell theory modified to 
include the effects of shear deformation and rotary inertia. 
au t  this paper since it is particularly useful in identifying the symmetries and, consequently, 
simplifies the element development. 

of the fundamental unknowns). 

Indicia1 notation is used through- 

Both triangular and quadrilateral elements are considered. 
The elements are conforming and satisfy continuity requirements of the type C 0 (continuity 

SYMBOLS AND NOTATION 

Aaprp 9Aa3p3’ 
shell compliance coefficients, inverse of shell stiffnesses 

B@YP,G&P i 
a side length of plate or shallow shell 

extensional stiffnesses of shell ColpYP 

transverse shear stiffnesses of shell ca3p3 

stiffness coefficients of kth layer of shell 



portions of shell boundary over which tractions and displacements are prescribed 

bending stiffnesses of shell 

elastic modulus of isotropic materials 

error index (see eq. (36)) 

elastic moduli in direction of fibers and normal to it, respectively 

stiffness interaction coefficients of shell 

rise of shallow shells 

shear moduli in plane of fibers and normal to it, respectively 

nodal stress resultants 

local thickness of shell 

distances from reference (middle) surface to top and bottom surfaces of kth 
layer, respectively 

stiffness coefficients of shell element 

geometric or initial stress stiffness coefficients of shell element 

curvatures and twist of shell reference surface 

direction cosines, cos(xa,xal) 

consistent mass coefficients of shell element 

bending-moment stress resultants 

number of shape functions 

densitv parameters of shell 

3 



I1 

- 
n 

P f 

PO 

Qa 

R 

r 

ij -ij s- s - 
IJ’ IJ 

T 

U 

UC 

UO 

‘shyUa 

shape or interpolation functions 

extensional (in-plane) stress resultants 

relative magnitudes of prestress components 

total number of elements in X I -  or  x2direction 

total number of nodes in finite-element model 

unit outward normal to  shell boundary 

consistent nodal load coefficients 

external load intensities in coordinate directions 

intensity of uniform pressure loading 

transverse shear stress resultants 

radius of curvature 

radial coordinate in circular cylindrical shell (see fig. 24) 

“generalized” stiffness coefficients of shell element 

kinetic energy of shell 

strain energy of shell 

complementary energy of shell 

strain energy due to prestress 

measures of shear deformation and degree of anisotropy 

displacement components in coordinate directions 

work done by internal forces 
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W,W work done by external forces 

orthogonal curvilinear coordinate system (see fig. 1 ) xQI,x3 

1 
xor nodal values of x, 

- 
P dimensionless eigenvalues of stiffness matrix 

relative size of rth element in variable grid (eq. (37)) 

dummy coordinates of ends of rth element 

e fiber orientation, angle between fiber direction and x1 -axis 

constant defined in appendix D K 

h in-plane loading parameter 

- - - __ __ 
nondimensional frequency ( w \i pa  ET for plates; w \/ph2/ET for shallow 

spherical segments; o \/*; for circular cylinders) 

- x 

Poisson’s ratio for isotropic materials V 

Poisson’s ratio measuring strain in T-direction (transverse) due to  uniaxial normal 
stress in L-direction (direction of fibers) 

LT 

natural coordinates of node i 

natural (dimensionless) coordinate system in element domain 

functionals defined in equations (1) and (2) 

density of plate or shell material 

density of kth layer of laminated shell 

uniform extensional stress . in  cylindrical shell 

rotation components 

5 
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nodal displacement parameters 4 
s2 shell domain 

0 circular frequency of vibration of shell 

Range of indices: 

Lowercase Latin indices 1 to m 

Uppercase Latin indices: 
I,J 1 to 5 
I,J 1 to 8 
- -  

Greek indices 1,2 

Finite-element-model notation: 

SQN stiffness formulation, quadrilateral element, N shape functions per fundamental 
unknown 

STN 

MQN 

MTN 

SQH 

stiffness formulation, triangular element, N shape functions per fundamental 
unknown 

mixed formulation, quadrilateral element, N shape functions per fundamental 
unknown 

mixed formulation, triangular element, N shape functions per f~indamental unknown 

stiffness formulation, quadrilateral element, Hermitian interpolation functions 

The analytical formulation is based on a form of the shallow-shell theory, with the 
effects of shear deformation, anisotropic material behavior, rotary inertia, and bending- 
extensional coupling included. (See appendix A and ref. 18.) For stability problems, the 
prebuckling stresses are assumed to be given by the momentless (membrane) theory. Two 
finite-element formulations are considered. In the first formulation (displacement model) the 
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fundamental unknowns consist of the displacement and rotation components of the shell 
reference (middle) surface, and the stiffness matrix is obtained by using Hamilton's principle 
(which for static problems reduces to the principle of minimum potential energy). 
mental unknowns in the second formulation (mixed model) consist of the 13 shell quantities: 
generalized displacements u,, w, and @, and stress resultants Nap, Map,  and Q,. (See 
fig. 1 for sign convention.) The generalized stiffness matrix is obtained by using a modified 
form of the Hellinger-Reissner mixed variational principle. 

The funda- 

The functionals used in the development of displacement and mixed models are given by 
the following equations: 

Displacement models 

IT(uayw,@a) = U + Uo - W - T 

Mixed models 

~R(N,~,M,~,Q,,u,,w,@,) = V + Uo - Uc - W - W - T 

where 

In equations (3) to are extensional stiffnesses, bend- (91, Capyp, Dapyp, and Fapyp 
ing stiffnesses, and stiffness interaction coefficients of the shell; Ca3p3 are transverse shear 
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stiffnesses of the shell; &prp, B,pyp, Gaprp, and A,3p3 are shell compliance coefficients 
(see appendix A); IC,, 
are the initial stress resultants (prestress field) which are proportional to  the in-plane load fac- 
tor A; pa and p are the external load components in the orthogonal coordinate direc- 
tions x, and x3, respectively; mo, m l ,  and m2 are density parameters of the shell 
defined in appendix B; w is the circular frequency of vibration of the shell; s2 is the 
shell domain; co and cu are portions of the boundary over which tractions and displace- 
ments are prescribed; is the unit normal to the boundary; the quantities with a tilde 
denote prescribed boundary stress resultants and displacements; and a, - 

are the curvature components and twist of the shell surface; XNZp 

na a 
ax; 

FINITE-ELEMENT DISCRETIZATION 

The shell region is decomposed into finite elements d e )  connected at appropriate 
nodes, where the superscript e refers to  the element. 
model and the fundamental unknowns are approximated by expressions of the form: 

A typical element is isolated from the 

Displacement models 

Mixed models 

In addition to  the approximations of the generalized displacements (eqs. (10) to  (12)), the 
stress resultants are approximated by 

where superscripts identify the location and subscripts designate the ordering of nodal unknowns; 
N1 
placement parameters (including, possibly, nodeless variables); 

i 
$J are the shape (or interpolation) functions; (i = 1 to  m, J = 1 to  5) are nodal dis- 

f = 1 to 8) i 
J 

H- (i = 1 to m, 
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are nodal stress-resultant parameters; m equals the number of shape functions in the approxi- 
mation; Greek indices take the values 1,2; and a repeated lowercase Latin index denotes sum- 
mation over the range 1 to m. 

ELEMENT-BEHAVIOR REPRESENTATION 

A number of displacement and mixed finite elements having both triangular and quadri- 
lateral shapes were developed in the present study. 
conditions required by the variational principles on which they are based. Within each family 
of elements, different shape (or interpolation) functions are used for approximating the funda- 
mental unknowns. 
table 1 and are referred to frequently in the subsequent sections. 

All the elements satisfy the continuity 

The characteristics and designations of these elements are summarized in 

All the triangular elements developed are based on complete polynomial approximations 
of the fundamental unknowns, thus ensuring that the functional variation is independent of 
coordinate transformations. 
are of the serendipity type (refs. 19 and 20), that is, with their nodes located along the ele- 
ment boundaries. The polynomial approximations used in these elements include terms which 
are of higher order than the complete expansion, and therefore, the functional variation is 
dependent on coordinate transformation. 

Most of the quadrilateral elements considered in the present study 

In each element, the same set of shape functions is used for approximating all the fun- 
damental unknowns and the nodal parameters are selected to be the values of the fundamen- 
tal unknowns at the different nodes. However, in one of the elements (SQ8-4 element), 
polynomials of different degree were used for approximating different sets of fundamental 
unknowns (lower degree polynomials were used for approximating the rotations); in the 
SQH element, products of first-order Hermitian polynomials were chosen as shape functions 
and the nodal parameters consisted of the generalized displacements, their first derivatives, and 
mixed second derivative with respect t o  the dimensionless local coordinates t1 and E * .  
(See appendix C.) 
aries. 

Continuity of these derivatives is enforced along the interelement bound- 
Since this is not required by the variational principle, the element is overconforming. 

For the two quadrilateral stiffness elements with four and eight nodes, internal degrees 
of freedom are added through the addition of displacement modes which vanish along the 
edges of the element. The shape 
functions associated with the internal degrees of freedom are products of the equations of the 
element boundaries times another polynomial, with the product representing bubble or internal 
displacement modes (elements SQS, SQ7, SQ9, and SQ11). 
(SQS and SQ9) corresponds to zero degree of the latter polynomial. (See table 1 and 
appendix C.) 

Those modes are usually called bubble functions (ref. 21). 

The case of one internal mode 

9 



In all the elements developed, the rigid body modes that cause no straining have not  
been included explicitly in the displacement fields; rather, implicit representation of these modes 
was made. A quantitative estimate of the accuracy of rigid-body-mode representation was made 
by evaluating the six lowest eigenvalues of the element stiffness matrix. 
ther in connection with the numerical studies. 

This is discussed fur- 

For modeling shells with curved boundaries, isoparametric elements were used in which 
the element boundary curves are approximated by the same shape functions used in approxi- 
mating the behavior functions, that is, 

xa = Nix: 

where xk are the nodal values of xa. Numerical results obtained with the use of isopara- 
metric SQ12 elements are presented in the next main section. 

FINITE-ELEMENT EQUATIONS 

The governing equations for each element are obtained by first replacing the fundamental 
unknowns by their expressions in terms of the shape functions (eqs. (10) to  (15)) in the 
appropriate functional (action integral for displacement models and Hellinger-Reissner functional 
for mixed models) and then applying the stationary conditions of that functional. 
to  a set of equations for each element of the following form: 

This leads 

Displacement models 

, J 
L 

Mixed models 

. 

and 

ij where KiJ and are stiffness and geometric, or initial stress, stiffness coefficients; 
M ij are consistent mass coefficients; S- and $ are “generalized” stiffness coefficients; 

and P’ are consistent load coefficients. The formulas for the aforementioned stiffness, mass, 

IJ IJ ij 
IJ . IJ IJ 

I 
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and load coefficients are given in appendix D. 
bifurcation-buckling problems, 

For stress-analysis problems, h = w = 0; for 
i w = P’ = 0; and for free-vibration problems, h = P = 0. I I 

In equations (17) and (18) the range of the lowercase Latin superscripts is 1 to  m; the 
range of the uppercase Latin subscripts (1,J) and (i,j) is 1 to  5 and 1 to  8, respectively. 
The K, M, and S terms are completely symmetric under the interchange of one pair of 
indices for another, each pair of indices consisting of a superscript and a subscript just beneath 
it. 

To write equations (17) and (18) in matrix form, the first superscript-subscript pair of 
each of the K, S, and M terms defines the row number and the second pair defines 
the column number. For example, in equations (17) the term K:J is located in the 
[S(i-1) + 13th row and the L5U-1) + J] th  column of the element stiffness matrix. 

In the stress-analysis problems, the internal degrees of freedom (nodal parameters associ- 
ated with bubble modes) can be eliminated without any loss of accuracy by using the static 
condensation procedure (ref. 22). In stability and vibration problems, this is not done since 
it results in approximate elemental matrices. 

The integrals in the expressions for the stiffness, mass, and load coefficients (appendix D) 
are evaluated by means of the numerical quadrature formulas presented in references 20 and 23. 
In each case, the quadrature formula selected had the least number of points required to  ensure 
exact evaluation of the integrals (depending on the degree of the interpolation polynomials). 
Exceptions to this are the cases of general quadrilateral or isoparametric elements based on the 
displacement models in which the stiffness and geometric stiffness coefficients contain fractional 
rational functions that are approximated by - polynomials in the numerical quadrature process. 
Each entry in the elemental matrices S and of the mixed models (eqs. (18)) contains 
just a single term. (See appendix D.) In contrast, the entries of the matrix K of the 
displacement models (eqs. (1 7)) are linear combinations of at least four terms, as implied by 
the repeated (dummy) subscripts of the coefficients K in appendix D. In view of this, the 
formation of the elemental matrices for the mixed models is simpler and was found t o  be less 
time consuming than for the displacement models. 

BOUNDARY CONDITIONS 

In the displacement models, only kinematic (geometric) boundary conditions need to  be 
satisfied. Force (stress) boundary conditions can also be satisfied if displacement derivatives 
are chosen as nodal parameters (e.g., SQH element). 
boundary conditions on the accuracy of solutions is discussed in the examples in the section 
“Numerical Studies.” 

The effect of introducing the stress 

11 



In the mixed models, both kinematic and force (stress) boundary conditions must be 
satisfied. The boundary conditions used in the present study are listed in table 2. 
numeral 1 in this table indicates that the nodal parameter is retained and 0 indicates that the 
nodal parameter is set to zero. 

The 

For inclined (or curved) boundaries, it is convenient t o  use a modified set of nodal 
parameters including normal and tangential components of displacements and stress resultants 
at  the boundary points, that is, u,’, Narpr, M,rpr, and Q,’ (see fig. 2), where 

The element equations at that boundary point are modified accordingly. 
tions (17) are modified as follows: 

For example, equa- 

ij where the relations between K?rJr and KIJ  are given by 

12 



.. 
K:131 = K i 3  

ij 
K:,a’+3 = Qa,a) K3,a+3 

Kij and M t J J I .  
I’J’ 

with similar relations for 

ASSEMBLY AND SOLUTION OF EQUATIONS 

If the elemental matrices are assembled and the boundary conditions are incorporated, 
the resulting finite-element field equations can be represented in the following compact form: 

Displacement models 

Mixed models 

where &), [E], [MI , and (P) contain the stiffness, geometric stiffness, mass, and load 
distributions; [S) and [s] contain the “generalized” stiffness distributions; ($) and (9 

I); and H’- at the various J 
are the vectors of nodal unknowns composed of the subvectors 
nodes; and the superscript T denotes transposition. Note that in the mixed models 
(eqs. (31)), the stress resultants are assembled first. 

matrices. [M] and [-z] are banded symmetric; and the matrix [i) is sparse. 

ment models (eqs. (30)) can be solved by any of the efficient direct techniques published in 
the literature. 
mixed models can best be solved by the hypermatrix Gaussian elimination scheme. 
ref. 27.) 

The matrices TK) and (S] are symmetric, positive definite, and can be banded; the 

For stress-analysis problems, that is, 

(See, e.g., refs. 24 to  26.) 

X = w = 0, the governing equations of the displace- 

On the other hand, the governing equations of the 
(See 
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For eigenvalue problems, 
(eqs. (31)) by first eliminating 
in the following form: 

it is convenient to modify the equations of the mixed models 
the stress resultants and then rewriting the resulting equations 

where 

The matrix [XI is positive definite. 

EIGENVALUE EXTRACTION TECHNIQUES 

,. 
In the absence of the external load vector (P), equations (30) and (31) define an alge- 

braic eigenvalue problem. 
are obtained by applying the subspace iteration technique presented in reference 28 t o  the 
equations of the displacement model. 

For free-vibration problems X = (9) = 0, the natural frequencies 

The technique is based on the use of simultaneous inverse iteration with Gram-Schmidt 
orthogonalization. 
vectors required, but much less than the dimensions of the matrices considered. 

The number of vectors used in the iteration process is more than the eigen- 

For the mixed models, the natural frequencies are obtained by applying the Sturm 
sequence technique with iterations to the modified equations (eqs. (32)). 
the desired roots are first isolated by Sturm sequence procedure, then the inverse iteration tech- 
nique is applied for the determination of individual roots along with their eigenvectors. 
ref. 29.) 

In this technique 

(See 

For bifurcation-buckling problems, where only the minimum buckling load parameter is 
required, it is more efficient to use the inverse-power method presented in reference 30 for 
both the displacement and mixed models. 

EVALUATION OF STRESS RESULTANTS 

In  the mixed models, once the problem is solved, all the stress resultants are readily 
available. 
from the nodal displacement parameters by using the following relations: 

On the other hand, in the displacement models the stress resultants are obtained 
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Qa = ca3p3 (apNi$i + Ni$i+p) (35) 

The stress resultants obtained from equations (34) and (35) generally violate both the 

Therefore, in the present study the customary procedure of 
interior differential equilibrium and the stress-resultant boundary conditions and generate discon- 
tinuities at the element nodes. 
averaging contributions of contiguous elements at common nodes is followed. 
is not needed for the SQH element. 

Such averaging 

Other techniques have been suggested to improve the accuracy of the stress calculations. 
These include the integral stress technique (ref. 31), which is based on least-squares minimiza- 
tion of the stress error function within each element, and the conjugate stress method (ref. 32), 
which uses biorthogonal expansion to the displacement approximation. Both these approaches 
involve additional computational efforts and are not used in the present study. 

NUMERICAL STUDIES 

To assess the relative merits of the different displacement and mixed finite-element mod- 
els developed in this study (table l ) ,  a large number of linear stress-analysis, free-vibration, and 
bifurcation-buckling problems are solved by these finitc-element models. Particular emphasis is 
placed on the effects of shear deformation and anisotropic material behavior on the accuracy 
and rate of convergence of the different models. 

The numerical examples are aimed a t  clarifying a number of questions concerning each 
of the following effects on the accuracy and rate of convergence of finite-element solutions: 
(a) an increase in the order of approximating polynomials, (b) addition of internal degrees of 
freedom, and (c) use of derivatives of generalized displacements as nodal parameters. 

PLATE EVALUATION RESULTS 

Four sets of plate problems are solved which contain some of the characteristics typical 

In one of the problems, comparison is made with experimental results. 
of practical problems and at the same time are problems for which an essentially exact solu- 
tion can be obtained. 
The problems examined are 

(a) Stress, free vibration, and bifurcation buckling of laminated orthotropic square plates 
with simply supported edges 

(b) Stress analysis of orthotropic square plates with clamped edges 

(c) Stress and bifurcation-buckling analysis of square anisotropic plates with simply sup- 
ported edges 

(d) Stress analysis of cantilevered skew plates 
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All the models in table 1 are applied to  problems (a) and (b). The higher order dis- 
placement and mixed elements are applied t o  problem (c). 
placement models SQH and SQ12 are applied to problem (d). 
discussed subsequently. 

The higher order quadrilateral dis- 
The results of these studies are 

Square Plates 
- 

The first set of problems considered is that of the stress, free vibration, and bifurcation 
buckling of orthotropic and anisotropic square plates. 
section are for the symmetrically laminated nine-layered graphite-epoxy plates shown in figure 3.  
For these plates two fiber orientations are analyzed: 

Most of the results presented in this 

(a) Orthotropic plates with fiber orientation (0/90/0/90/0/90/0/90/0) 

(b) Anisotropic plates with fiber orientation (e / -e /e / -e /e / -e /e / -e /e ) ,  where 

For orthotropic plates the total thickness of the 0' and 90' layers is the same, and for 
anisotropic plates the total thickness of the 8 and -6 layers is the same. Boundary conditions 
for both simply supported and clamped plates are considered. 

0 < 8 5 - 45' 

Simply Supported Orthotropic Plates 

The orthotropic plate problems are selected because an exact (analytic) solution can be 
obtained, and therefore, a reliable assessment of the accuracy of the different finite-element 
models can be made. The various solutions obtained are listed first and are discussed subse- 
quently. Since doubly symmetric deformations of the plate are considered, only one-quarter 
of the plate was analyzed, and the symmetric boundary conditions along the center line are 
listed in table 2. 

For stress-analysis probiems, the plates were subjected to  uniform loading p,. In addi- 
tion to studying the accuracy of the maximum displacements and stress resultants obtained by 
the various displacement and mixed models, an error index 
introduced to provide a quantitative measure of the relative accuracy of the stress resultants 
and displacements obtained by the different models. 

Ef (a function of f) has been 

The error index is given by 

where 

f any of the stress resultants or generalized displacements 
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ly 

fi, fi exact and approximate values, respectively, of the function a t  the ith node 

lfmaxl maximum absolute value of the exact function in the domain of interest (one-quarter 
of the plate) 

- n total number of nodes in one-quarter of the plate 

The error index (eq. (36)) is essentially a weighted root-mean-square error. 
error index 
model) is. 

The smaller the 
Ef, the more accurate the approximate solution (obtained by the finite-element 

To study the effect of shear deformation on the performance of the different finite- 
element models, three values of the thickness ratio 
h/a = 0.1, 0.01, and 0.001. 
the strain energy due t o  transverse shears to  the total strain energy was computed for the three 
plates. The results are shown in table 3 .  
tion is quite important for the first plate and is negligible for the latter. Table 4 gives the 
values of the error index for each of the stress resultants and generalized displacements 
obtained by some of the stiffness and mixed finite-element models for two plate thicknesses 
(h/a = 0.1 and 0.01) and three different grids. An indication of the accuracy and rate of con- 
vergence of the solutions obtained by the different models is given in figures 4 and 5,  and the 
effect of h/a on the accuracy of the different models is shown in figure 6. 

h/a of the plate were considered: 
As a quantitative measure of the shear deformation, the ratio of 

As can be seen from this table, the shear deforma- 

Ef 

The doubly symmetric free-vibration modes of the plate are analyzed by the various ele- 
ment models. An indication of the accuracy and rate of convergence of the fundamental fre- 
quency obtained by different displacement and mixed models is given in table 5 and figure 7 
for plates with thickness ratios h/a of 0.1 and 0.01. Figure 8 shows the effect of addition 
of internal degrees of freedom on the accuracy and rate of convergence of the four- and 
eight-node stiffness quadrilateral elements. Table 6 shows the rate of convergence of the three 
vibration frequencies w1,3, w3,1 , and w3,3 obtained by different stiffness models. 

order models, the SQ12 and SQH elements were applied to the free-vibration problem of 
two-layered orthotropic plates. Results obtained by these two elements for the two plates 
with h/a = 0.1 and 0.01 are shown in table 7 along with the exact solutions. 

To study the effect of the bending-extensional coupling on the accuracy of the higher 

As a quantitative measure of the shear deformation, the exact frequencies obtained by 
the shear-deformation and classical theories are compared in tables 5, 6, and 7. 

Since the accuracy of the different elements for buckling problems is expected to be 

ANYl. The results 
similar to that for vibration problems, only the SQ12 and SQH elements were applied to the 
bifurcation buckling of a plate subjected to uniaxial edge compression 
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obtained using a 2 X 2 grid in the plate quarter are given in table 8 along with the exact 
solutions for the three thickness ratios h/a = 0.1, 0.01, and 0.001. 

An examination of the results obtained for simply supported orthotropic plates reveals 

(1) Although the convergence of the solutions obtained by all the displacement models 
is monotonic in character, the convergence of the lower order models is much slower than 
that of the higher order models. 
plates. (See figs. 4 and 7.) 

This is particularly true for stress resultants and for thinner 

(2) For the same total number of degrees of freedom, the higher order displacement 

(See fig. 5.) 

h/a = 0.1, the fundamental frequency obtained by the SQ12 and SQH elements and 

models (e.g., SQ12 and SQH) lead to  considerably more accurate results than the lower order 
models. 
The Same phenomenon is observed for vibration frequencies. As an example of this, for plates 
with 
2 X 2 grid (corresponding to 99 and 108 degrees of freedom) agrees with the exact frequency 
to four significant digits. 
obtained by the SQ4 element and 5 X 5 grid (108 degrees of freedom) is approximately 
2 percent. 
riorated much more rapidly than that of the higher order models. (See tables 5 and 6.) 

(3) The accuracy of the solutions obtained by the lower order displacement models 

This is particularly true for stress resultants and for thinner plates. 

(See table 5.)  In contrast, the error in the fundamental frequency 

For higher frequencies and thinner plates, the accuracy of the SQ4 element dete- 

(SQ4 element) is very sensitive t o  variations in the thickness ratio of the plate. 
plates, the accuracy of this element was found to  be very poor. 
This is because the assumed displacement functions require that the element edges remain 
straight, and the predominant bending deformation in thin plates is therefore poorly represented. 
This fact has been recognized by previous investigarors and improvements have been suggested. 
(See, e.g., refs. 12,  14, 15,  and 33.) However, no procedure exists to  improve the accuracy 
of the element for all ranges of thickness ratio of the plate. 

For thinner 
(See tables 4 ,  5, and 6.) 

(4) The SQ8-4 element, with different-order polynomial approximations for displacements 
and rotations, although considerably more accurate than the SQ4 element, is found to  be less 
accurate than the SQ8 element. For thin plates (h/a = O.OOl),  the performance 
of the SQ8-4 element was found to  be unsatisfactory. (See fig. 6.) 

(See fig. 4.) 

( 5 )  Of all the finite-element models considered, the most accurate results for a given total 

The SQH element has the added advantage that the stress resultants are continuous 
number of degrees of freedom were obtained with the SQH element. 
and 6.) 
along the interelement boundaries and no averaging is needed in their evaluation. 
the presence of concentrated loads or discontinuities in the geometric or material characteristics, 
Some of the nodal parameters are discontinuous and a special treatment is needed. (See, e.g., 
ref. 34.) 

(See fig. 5 and tables 5 

However, in 
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(6) Bending-extensional coupling does not appear to have any adverse effect on the accu- 
racy of the higherorder displacement models. (See table 7.) 

(7) The addition of internal degrees of freedom (bubble modes) t o  the displacement mod- 
els results, in general, in improving the performance of the element. 
and fig. 8.) In stress-analysis problems where the internal degrees of freedom can be eliminated 
by static condensation techniques, this is an effective way of improving the accuracy of the ele- 
ment, without affecting the accuracy of the solution. For free-vibration problems, the addition 
of internal degrees of freedom is less effective than the addition of nodes to  the element. An 
exception t o  this is the case of the SQ8 element when applied t o  the analysis of higher vibra- 
tion modes of plates. In this case addition of higher order polynomial terms associated with 
internal degrees of freedom has a more pronounced effect on the accuracy than the addition 
of nodes. 
n = 3 in table 6.) 

(See tables 4 ,  5, and 6 

(Compare the frequencies obtained by SQ9 and SQ12 elements for the case m = 3,  

(8) Whereas for the SQ4 element addition of a single internal degree of freedom results 
in considerable improvement in accuracy, for the SQ8 element three internal degrees of freedom 
have to  be added before a pronounced effect on accuracy can be observed. An 
exception t o  this is the case of higher vibration modes, where the addition of a single internal 
degree of freedom improves the accuracy of the SQ8 element substantially. 

(See fig. 8.) 

(See table 6.) 

(9) The solutions obtained by the mixed models are more accurate and less sensitive t o  
variations in the thickness ratio of the plate than those obtained by the displacement models 
based on the same shape functions. 
convergence of the solutions obtained by the lower order mixed models (MT3 and MQ4) is 
slow and oscillatory in character. 
racy of the solutions obtained by mixed models is lower than that obtained by higher order 
displacement models (SQH, STlO, and SQ12). (See fig. 5.) 

(See tables 4 and 5 and figs. 4 ,  5,  and 6.) However, the 

Also, for a given number of degrees of freedom, the accu- 

Two other conclusions were found but the solutions on which they are based are not 
reported herein. These are 

( I O )  The accuracy of the solutions obtained by the triangular elements was found to be 
sensitive to  the choice of their orientation. The best accuracy was obtained when the displace- 
ment models (ST6 and STlO) had opposite orientation to  that of the mixed models (MT3 
and MT6). The results shown in tables 4, 5, and 6 and in figures 4 ,  5, 6 ,  
and 7 were obtained for the aforementioned choice. 

(See fig. 4.) 

(1 1)  The effect of satisfying the force boundary conditions for the SQH element (in addi- 
tion to the kinematic conditions). was found to  be insignificant. 
the fourth significant digit. 

Differences occurred only in 
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Before closing this section, a coniparison of the elements developed in the present study 
with those previously reported in the literature is in order. Since most of the latter elements 
do not include shear deformation, the problem of an isotropic square plate with h/a = 0.01, 
for which the shear deformation is negligible, was selected. The plate had simply supported 
edges and was subjected to uniform loading The convergence of solutions obtained by 
several classical plate elements was reported in reference I 1. Figure 9(a), which is reproduced 
from reference 11,  is contrasted with figures 9(b), (c), and (d), which show the convergence 
of the center displacement w, center bending moment M11, and strain energy U obtained 
by a number of displacement and mixed shear-flexible elements. Except for very coarse grids 
(2 X 2 or  less in the plate quarter), the higher order elements developed in the present study 
are competitive with the refined elements previously reported in the literature. 
of the thin isotropic plate represents a rather severe test for the accuracy of the shear-flexible 
elements, since the accuracy of such elements reduces with the diminishing of shear deformation. 

po. 

The problem 

Clamped Plates 

To study the effect of clamped edges as boundary conditions on the accuracy of the 
different stiffness models, the edges of the orthotropic plates considered in the previous sub- 
section were assumed to be totally clamped and the plates were analyzed by the different 
stiffness and mixed models. 
The standard of comparison was taken to be the solution obtained by the SQH element and 
a 6 X 6 grid in the plate quarter for h/a = 0.1, and an 8 X 8 grid for 
and 0.001. An indication of the accuracy and rate of convergence of displacements and stress 
resultants obtained by the different models is given in figure 10 for three plate thicknesses, 
namely, h/a = 0.1, 0.01, and 0.001. Also, figure 11 shows the distribution of the transverse 
displacement w and the bending moment M l l  for the thinner plates (with h/a = 0.01 
and 0.001) obtained by the higher order displacement models SQ12 and SQH and the mixed 
model MQ8 with a 2 X 2 grid in the plate quarter. As can be seen from figure 10, the 
solutions obtained by the different displacement and mixed models were, in general, less accu- 
rate than those for simply supported edges (fig. 6). This is particularly true for thinner plates. 
An exception to  this is the SQH element, which exhibited very high accuracy and fast conver- 
gence for all thickness ratios. Also, the remarks made in the previous subsection regarding the 
effect of h/a on the accuracy and convergence of the solutions obtained by different models 
were found to apply in this case, as well. 

The plates were subjected to uniform loading of intensity 

h/a = 0.01 

po. 

Anisotropic Plates 

To study the effect of anisotropy on the performance of the higher order displacement 
models, the fiber orientations of the graphite-epoxy plate shown in figure 3 were chosen to  
be (8/-I9lI9/-I9/I9/-I9/0/-8/8~ with 0 < 19 I: - 45'. The plate had simply supported edges and 
was subjected to uniform loading of intensity po. 
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Before the numerical studies were conducted, the effects of variations of 8 on the 
Also, an attempt was made to introduce a quantitative response of the plate were studied. 

measure of the degree of anisotropy of the plate. 
(with Q( f 0) and Capyp, Fapyp, and Dapyp (with either a = /3 and y # p or 

a # p 
anisotropic plates, it seems reasonable to take their contribution to the total strain energy of 
the plate as a quantitative estimate of its degree of anisotropy. 
of the anisotropic coefficients to the total strain energy will be referred to as 

Since the elastic coefficients (2,303 

and y = p) vanish for orthotropic (and isotropic) plates and are nonzero only for 

Henceforth, the contributions 

Ua. 
Figure 12 shows the effect of variations in 8 on the values of the displacement w 

a t  the center of the plate as well as on the strain and the bending-moment resultant M11 
energies U, Ua, and ush. An examination of figure 12(c) reveals that the case 8 = 45' 
leads to the highest degree of anisotropy and the maximum value of the shear deformation. 
Therefore, the anisotropic plate with was adopted fur the convergence studies. 8 = 45' 

An indication of the accuracy and convergence of the higher order displacement mod- 
els STIO, SQ12, and SQH and the mixed model MQ8 is given in figure 13 for the plate tliick- 
nesses h/a = 0.1, 0.01, and 0.001. 
to be the solution obtained by the SQH element and an 8 X 8 grid in the whole plate. Fig- 
lire 14 shows the distribution of the transverse displacement w and the stress resultant M11 
for the thinner plates (h/a = 0.01 and 0.001) obtained by the SQ12 and SQH elements with 
a 4 X 4 grid, along with the converged solutions. As in the cases of simpIy supported and 
clamped orthotropic plates, the fastest convergence was obtained by using the SQH elements. 
The only adverse effect of the anisotropy o n  the performance of the elements is in the non- 
monotonic character of the convergence of stress resultants. 

The standard of comparison (converged solution) was taken 

.~ - 

(See fig. 13(b).) 

As a further check on the accuracy of  the SQH elements in the case of anisotropic 
plates, the bifurcation-buckling problem of the eight-layered anisotropic plate shown in fig- 
ure 15 was analyzed. The plate is subjected to  combined compressive and shear edge loading. 
The same plate was analyzed in reference 35 using Galerkin's method. The results obtained 
using three grid sizes of SQH elements (in the whole plate) are given in table 9 along with 
those of reference 35. Also, the buckling mode shapes are shown in figure 15. 

Skew Plates 

The next problem considered is that of the stress analysis of an isotropic skew plate 
subjected t o  uniform transverse loading (fig. 16). 
a more complex set of boundary conditions and stress patterns than the ones previously 
considered. 

The problem was selected because it includes 

For this plate and these boundary conditions, an unbounded bending moment and a stress 
singularity occur at point B. 
even when the shear-deformation theory (ref. 37) is used. 

(See ref. 36.) The nature of the singularity remains unaltered 
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Analytical and experimental studies of this problem were reported in reference 38. 
analytic solution was obtained by applying the mixed Hellinger-Reissner formulation in conjunc- 
tion with direct variational methods t o  the classical plate theory (with shear deformation 
neglected). 

The 

The plate was analyzed with both the SQ12 and SQH elements. An indication of the 
accuracy and convergence of solutions obtained by both elements is given in figures 16(a) 
and (b). Shown in figures 16(c) and (d) are the experimental and analytical solutions of 
reference 38 compared with the present solutions. 

An examination of figures 16(c) and (d) reveals that the solutions obtained by both the 
SQH and SQ12 elements, in addition t o  having fast monotonic convergence, exhibit clearly the 
sharp gradient (singularity) of the bending-moment resultant M22 at point B. Of the two 
finite-element solutions, the SQH solution has a faster convergence and appears to be more 
accurate. Moreover, for a 4 X 4 or finer grid, the total number of degrees of freedom in 
the SQH solution is less than those in the corresponding SQ12 solution. 

SHELL EVALUATION RESULTS 

Five sets of shell problems are solved by the displacement models developed jn the pres- 
Comparison is made with exact and other approximate solutions whenever available. ent study. 

These problems are 

(a) Stress and free-vibration analysis of orthotropic shallow spherical segments 

(b) Stress analysis of anisotropic shallow spherical segments 

(c) Stress analysis of an isotropic cylindrical shell with a circular cutout 

(d) Free vibrations of an orthotropic cylindrical shell 

(e) Free vibrations of an anisotropic cylindrical shell 

All the displacement models listed in table 1 are applied to problem (a). Only the 
higher order models are applied to problem (b). 
to problem (c), and the SQH element is applied to  problems (d) and (e). The results of 
these studies are discussed subsequently. 

The isoparametric SQ12 element is applied 

Shallow Spherical Shells 

As a first application to  a shallow-shell problem, consider the stress and free-vibration 
analyses of simply supported, nine-layered, graphite-epoxy spherical segments. 
and material characteristics of the shell are shown in figure 17. 
examined in the previous subsections, shallow shells with two fiber orientations have been 
analyzed: 

The geometric 
As for the laminated plates 
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(a) Orthotropic shells with fiber orientation (0/90/0/90/0/90/0/90/0) 

(b) Anisotropic shells with fiber orientation (e / -e /e / -e /e / -e /e / -e /e ) ,  with 0 < 8 I: - 4.5' 

Orthotropic Shallow Shells 

For the orthotropic shells considered, analytic solutions were obtained and used as a 
standard for comparing the different finite-element solutions. 
of the shell were considered, and therefore, only onequarter of the shell was analyzed. 

Doubly symmetric deformations 

For stress-analysis problems, the shells were subjected to  uniform loading po. The 
different displacement models were used to  obtain solutions for three thickness ratios of the 
shell (h/a = 0.1, 0.01, and 0.001). 
ratios of the strain energy due t o  transverse shear to  the total strain energy of the shell were 
computed for the three shells. Results are given in table 10, and as for orthotropic plates, 
the shear deformation is quite important for the thickest shell and is negligible for the two 
thinner shells. 

As a quantitative measure for the shear deformation, the 

An indication of the accuracy and rate of convergence of the solutions obtained by the 
different models is given in figure 18 for the shell with h/a = 0.1. The effect of h/a on 
the accuracy of the different finite-element solutions is shown in figure 19. The distributions 
of the transverse displacement w and the stress resultants N22 and M11 obtained by 
the higher order elements SQ12 and SQH with a 2 X 2 grid in the shell quarter are shown 
in figure 20 along with the exact solutions for the two thinner shells (h/a = 0.01 and 0.001). 

The first four doubly symmetric vibration frequencies obtained by the different displace- 
ment models are listed in table 1 1  along with the exact frequencies for two thickness ratios 
(h/a = 0.1 and h/a = 0.01). The solutions obtained using the SQ4 element were, in general, 
far removed from the exact solutions and are not reported herein. 

The orientation of the ST6 and STlO elements, for optimum accuracy, was found to be 
the same as that for orthotropic plate problems. (See fig. 4.) 

An examination of figures 18, 19, and 20 and table 11 reveals that the remarks made 
in connection with the orthotropic-plate problems regarding the effectiveness of the higher 
order models (STlO, SQ12, and SQH elements) and the effect of internal degrees of freedom, 
apply in this case as well. 
case of very thin shells (with h/a = 0.001) is due t o  the boundary-layer effects exhibited by 
the stress resultants (see fig. 20), hence the difficulties (and nonmonotonicity) in convergence 
observed in figure 19. The convergence of the total energy obtained by the higher order 
models was fast and monotonic, even for the very thin shell. (See fig. 19(d).) 

The apparent poor performance of the different models for the 

23 



Anisotropic Shallow Shells 

For anisotropic shells the fiber orientations were chosen to  be (e/-e/e/-8/8/-8/e/-8/8) 
with 0 < 8 I: - 45'. The shells were subjected to  uniform loading of intensity po. The 
quantitative measures for the degree of anisotropy and amount of shear deformation introduced 
for anisotropic plates were used for the anisotropic shallow shells as well. 

Figure 21 shows the effect of variations in 8 on the values of the center displace- 
ment w and the center stress resultants N22 and M11 for two thickness ratios of the 
shell (h/a = 0.1 and 0.01). Also shown (fig. 21(d)) are the strain energies U, Ua, and ush. 
The maximum values of U,h/u and Ua/U occur a t  different values of 8. This is to  be 
contrasted with the anisotropic plates, for which the maximum values occurred at  

The accuracy and convergence studies were conducted for shells with 

6' = 45'. 

8 = 45'. Fig- 
ure 22 gives an indication of the accuracy and convergence of the center displacement w and 
the strain energy U obtained by the higher order displacement models (ST10, SQ12, and SQH) 
for the three thickness ratios 
verged solutions) were taken to  be the solutions obtained by the SQH elements. An 8 X 8 
grid was used for shells with h/a = 0.1 and 0.01, and a 10 X 10 grid was used for shells 
with h/a = 0.001. The distributions of the normal displacement w and the stress resul- 
tants N22 and M11  obtained by the SQ12 and SQH elements with a 4 X 4 grid for the 
thinner shells (with 
solutions. As in all the previous problems, the SQH solutions had the fastest convergence. 
The degradation of accuracy due to  anisotropy for very thin shells, though not pronounced for 
higher order displacement models, can be clearly seen by comparing the results in figures 20 
and 23. 

h/a = 0.1, 0.01, and 0.001. The standards of comparison (con- 

h/a = 0.01 and 0.001) are shown in figure 23 along with the converged 

Rigid Body Modes 

For shallow shells, the rigid body modes are trigonometric in character and therefore 
are only approximated by the polynomial shape functions used in the present study. 
the accuracy of the approximation, the eigenvalues of the stiffness matrices of the various dis- 
placement models were computed for the three anisotropic shallow shells with 
and 0.001. The lowest six eigenvalues correspond to rigid body modes; the higher modes are 
straining modes. Table 12 summarizes the lowest seven eigenvalues, the maximum eigenvalues, 
and the traces of the stiffness matrices for the various models. In all cases the ratio &/pg 
was greater than 1 05,  which indicates that the rigid body modes are satisfactorily represented 
in these models. 

To assess 

h/a = 0.1, 0.01, 

24 



Cylindrical Shells 

Isotropic Cylinder With a Circular Cutout 

Consider the stress analysis of an isotropic cylindrical shell with a circular cutout sub- 
The geometric characteristics of the jected to a uniform axial tensile stress at its free ends. 

shell and loading are shown in figure 24. The problem was selected to  assess the accuracy of 
the isoparametric SQ 12 elements in situations where high stress gradients and curved boundaries 
occur. 
shell was analyzed. 

The shell and loading are doubly symmetric, and therefore, only one-quarter of the 

An approximate analytic solution for the problem, assuming the cylinder to be of infi- 
nite length, was given in reference 39, where it was shown that for this shell, the sliallow- 
shell approximation is valid. Therefore, the use of the SQ12 elements, with local element 
coordinates coinciding with global shell coordinates, is justified. 
solution was given in reference 40. 
ments were reported in reference 41. 
classical shell theory (with shear deformation neglected). Solution to  a similar cylinder problem 
using a refined grid of shear-flexible quadrilateral elements was reported in reference 42. 

4 difference-based variational 
Finite-element solutions using higher order triangular ele- 

All the aforementioned solutions were based on the 

Four graded networks with 4 X 4, 5 X 4, 5 X 6, and 8 X 6 SQ12 elements were used 
to analyze the shell. (See fig. 25.) In  an attempt to  make a rational choice for the variation 
of the grid size in both the X I -  and x2-directions, a variable grid parameter was introduced 
(ref. 43 and fig. 26): 

{ 

where cr is the relative size of the rth element, 77 refers t o  each of the X I -  and x2- 
coordinates, q. and vr+l are the coordinates of the ends of the element, and n is the 
number of elements in the 77-direction. A second-degree polynomial variation of Cr was 
chosen, that is, 

Cr = a + br + cr2 (38) 

where r is the element number 1 5 r 5 n. The coefficients a, b,  and c of the poly- 
nomial are determined by specifying the relative sizes of the first and last elements 
and 

c l  
Cn, and using the following three equations: 

n 

r= 1 
1 
n - c Cr = 1.0 (39) 
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{ 1 = a + b + c  

The characteristics of the grids used in the present study are shown in figure 26. 

The maximum stress concentrations 01 1/u0 
grids are given in table 13  along with results of previous investigators. 
tributions obtained by the 4 X 4 and 8 X 6 grids are shown in figure 27. The high accuracy 
and rapid convergence of the solutions obtained by the isoparametric SQ12 elements are clearly 
demonstrated by this example. 

and strain energies obtained by the four 
Membrane stress dis- 

Orthotropic Cylinders 

The natural frequencies and mode shapes of orthotropic, two-layered, simply supported 
circular cylinders without axial restraint are studied. The problems are selected to  assess the 
accuracy of the SQH elements when applied t o  laminated closed cylinders with high bending- 
extensional coupling. 
Shells with fiber orientation (9010) are analyzed. 

The geometric characteristics of the shells studied are shown in figure 28. 

For these cylinders an analytic solution is obtained and is used as a basis for comparison 
of the finite-element solutions. It is found that for this shell, the shallow-shell (Donnell’s) 
theory approximation is valid. The doubly symmetric vibration modes of the cylinders are 
analyzed and the symmetric boundary conditions along three of the edges are applied. 
eliminates the axial rigid body mode of the cylinder and allows obtaining the vibration modes 
having odd values of m (axial direction) and even values of n (circumferential direction). 
InitialIy a uniform grid with 2 X 2 SQH elements was used to model one octant of the cyl- 
inder (grid 1, fig. 29); however, this resulted in poor accuracy for the frequencies and mode 
shapes with n 2 - 4. Subsequently, the 2 X 2 grid was modified to cover only one-eighth of 
the circumference (grid 2, fig. 29). This resulted in considerable improvement in the accuracy 
of the frequencies for The frequencies obtained by the two grids are given in table 14 
along with the analytic solutions obtained by both the shear-deformation and classical shallow- 
shell theories. 
increases in the circumferential direction, as indicated by the increase of Numerically, the 
error increases from less than 0.5 percent for m = 1 ,  n = 2 to  approximately 25 percent 
for m = 1, n = 4. The increased stiffness of the finite-element model due to  the larger ele- 
ment size-to-wavelength ratio has caused a greater increase in the error of the finite-element 
analysis between the two modes. 
very accurate frequencies provided the element size is less than half the wavelength of the 
vibration mode. 

This 

n = 4. 

This table shows the decrease in accuracy as the element size-to-wavelength ratio 
n. 

The present example shows that the SQH elements lead to  
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Anisotropic Cylinders 

As a final example, consider the free-vibration analysis of  anisotropic two-layered circular 
cylinders. 
cussed in the preceding subsection, except for the fiber orientation, which is chosen to be 

The shells have the same characteristics as those for the orthotropic cylinders dis- 

(45/-45). 

Solutions are obtained using three grids with 2 X 4, 4 X 8, and 6 X 12 SQH elements 
(See fig. 30.) In order to eliminate the axial rigid body mode of the in the whole cylinder. 

cylinder, u1 
and associated mode shapes are shown in figure 31. 
obtained by the SQH elements is clearly demonstrated by this example. 

is set equal to zero a t  the center of each grid. The fundamental frequency 
The rapid convergence of the solutions 

CONCLUDING REMARKS 

Several shear-flexible finite-element models are applied to the linear static, stability, and 
vibration problems of plates and shells. The study is based on the shallow-shell theory with 
effects of shear deformation, anisotropic material behavior, and bending-extensional coupling 
included. Both stiffness (displacement) and mixed finite-element models are considered. All 
the elements examined are conforming, satisfactorily represent the rigid body modes, and 
exhibit uniform convergence for stress-analysis, free-vibration, and buckling problems. Primary 
attention in t h s  study is given to the effects of shear deformation and anisotropic material 
behavior on the accuracy and convergence of different finite-element models. 

On the basis of the present study, the following conclusions seem t o  be justified: 

1. Higher order displacement models (with cubic or bicubic interpolation polynomials) 
have the following advantages over lower order models: 

(a) The total number of unknowns required for a prescribed level of accuracy is less 
in the higher order than in the lower order models. This is particularly true for stress 
resultants and for thinner plates (with negligible shear deformation). 

(b)  The performance of the higher order models is considerably less sensitive to  
variations in the thickness ratio and shear deformation than that of the lower order 
models. 

2. The use of derivatives of displacements as nodal parameters (SQH element) has the 
obvious advantage that the stress resultants are defined directly a t  the nodes and no averaging 
is needed. In addition, this results in improving the performance of the element. 
in the presence of concentrated loads or discontinuities in the geometric or elastic characteris- 
tics of the shell, some of the parameters will be discontinuous and a special treatment is 
needed. 

However, 
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3. The addition of internal degrees of freedom (bubble modes) to  displacement models 
results, in most cases, in improving the performance of the element. 
where the internal degrees of freedom can be eliminated by static condensation techniques, 
this is an effective way of improving the accuracy of plate and shell elements without affect- 
ing the accuracy of the solution. For free-vibration (and buckling) problems, the addition of 
internal degrees of freedom is less effective than the addition of nodes to  the element. 
exception to this is the case of the eight-node quadrilateral element when applied to the 
analysis of higher vibration modes. 
a much more pronounced effect on the accuracy than the addition of nodes. 

In stress-analysis problems 

An 

In this case, addition of internal degrees of freedom has 

4. If mixed models are contrasted with displacement models, the following can be noted: 

(a) The development of mixed models involves considerably less algebra than the 
development of displacement models. 

(b) The performance of mixed models is, in general, insensitive to  variations in the 
thickness ratio and shear deformation. 

(c) Use of lower order interpolation functions (linear or bilinear) leads to a medi- 
ocre type of performance. 
using quadratic shape functions. 

Considerable improvement in the performance is achieved by 

(d) For a given number of degrees of freedom, the higher order displacement mod- 
els (with cubic or bicubic interpolation polynomials) lead to  higher accuracy than the 
mixed models with quadratic shape functions. The effective use of mixed models requires 
the development of efficient equation-handling techniques (e.g., based on hypermatrix stor- 
age schemes). 

5. Whereas material anisotropy was shown to  have an adverse effect on the performance 
of different displacement and mixed elements, the bending-extensional coupling does not seem 
to  have any pronounced effect on the accuracy and convergence of these elements. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
November 10, 1975 

28 



APPENDIX A 

FUNDAMENTAL EQUATIONS OF SHEAR-DEFORMATION SHALLOW-SHELL THEORY ~ _ _ _ _  

The fundamental equations of the shallow-shell theory are given in this appendix. 

STRAIN-DISPLACEMENT RELATIONSHIPS 

The relationships between strain and displacement are 

eap = y(aaup 1 + 3~~1,) + kap w 

where ea, are the extensional strains of the reference surface of the shell; ~p are the 
curvature changes and twist; and 2ea3 are the transverse shearing strain components. 

CONSTITUTIVE RELATIONS OF THE SHELL 

The relations between the stress resultants and strain Components of the shell are 

Qa = ca3p3 2Ep3 

The inverse relations are given by 

- 
‘4 - A&P NYP + B@TP Mw 
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APPENDIX A 

w=B @YP NrP + GorPrp Mw 

The C, F, and D coefficients are shell stiffnesses and the A, B, and G coefficients 
are shell compliances defined in appendix B. 
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APPENDIX B 

ELASTIC COEFFICIENTS OF LAMINATED SHELLS 

ELASTIC STIFFNESSES OF THE LAYERS 

(k) The nonzero stiffness coefficients caprp (k) and ca3p3 of the kth orthotropic layer of 
the shell referred to the directions of principal elasticity are given by 

and 

where the subscripts L and T denote the direction of fibers and the transverse direction, 

VLT is Poisson's ratio measuring the strain in the T-direction due t o  a uniaxial normal stress 
in the L-direction: 

"TL E~ = ~ L T  ET 

and the superscript k refers to  the kth layer. 
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The stiffness coefficients caprp and ca3p3 satisfy the following symmetry relationships: 

If the coordinates x, are rotated, the elastic coefficients caPW and ca3p3 trans- 
The transformation law form as components of fourth- and second-order tensors, respectively. 

of these coefficients is expressed as follows: 

Ca‘p‘y’p’ = capyp Qo1,oo Qp,p’ Qy,y‘ Qp,p’ 

and 

where c , ~ p ~ y ~ p ~  and car3pr3 are the stiffness-coefficients referred to  the new coordinate 
system xa‘ and 

Q,,,’ = COS( xa,x,’) 

ELASTIC COEFFICIENTS OF THE SHELL 

The equivalent elastic stiffnesses of the shell are given by 

and 

k= 1 

where NL is the total number of layers of the shell and hk and hk-1 are the distances 
from the reference surface t o  the top and bottom surfaces of the kth layer, respectively. The 
elastic compliances of the shell B,prp, Gaprp, and Aar3p3 are obtained by inver- 
sion of the matrix of the elastic stiffnesses. (See ref. 18.) 
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The shell stiffnesses and compliance coefficients satisfy symmetry and transformation rela- 
tions similar to those of the stiffness coefficients of individual layers. 

The density parameters of the shell are given by 

where pik) is the mass density of the kth layer of the shell. 
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APPENDIX C 

SHAPE FUNCTIONS_U_SED IN PRESENT STUDY 

QUADRILATERAL ELEMENTS 

The expressions of the shape functions for the different elements developed in this study 
in terms of the quadrilateral coordinates (,,E2 (ref. 44)  are given in this appendix. 

Bilinear Shape Functions 

The shape functions for the bilinear approximations (elements SQ4 and MQ4, see 
__ - -. . - . 

sketch (a)) are given by 
$9 

0 (1 , l )  

0 
(-1, -1) 

(1, -1) 
Sketch (a) 

where (with CY = 1,2) are the quadrilateral coordinates of node j .  

Quadratic Shape __ _- Functions . 

The shape functions for the quadratic approximations (elements SQ8 and MQ8, see 
sketch (b)) are given by 

Corner nodes 

Midside nodes 

(j = 2,6) 

(j = 4,8) 

(j = 1,3,5,7) 
c 

Sketch (b) 

34 



APPENDIX C 

Cubic Shape Functions 

The shape functions for the cubic approximations (element SQ12, see sketch (c)) are 
given by 

Corner nodes 

0' = 1,4,7,10) 

$9 
Other nodes 

Sketch (c) 

Hermitian Shape Functions 

The Hermitian shape functions (element SQH, sketch (d)) used in 
products of the following set of first-order Hermite polynomials (sketch 

C 

Hermitian Shape Functions 

The Hermitian shape functions (element SQH, sketch (d)) used in 
products of the following set of first-order Hermite polynomials (sketch 

f1({) = +({3 - 3{ + 2) 

f2({) = i ( P 3  - r2 - { + 11 

f 3 ( 0  = - l  q(C 3 - 3( - 2) 

\ 

0 0 

the present 
(e)): 

study were 

Sketch (e) 
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av av If the order of the nodal parameters at each node is chosen to be v, -- -- 
* at( at2’  

.~ 

... . 
j 
1 
5 
9 

13 

and -__ a”v where v denotes any of the fundamental unknowns, then the shape func- 
a t 1  at2’ 

i Q !  

~ - ---I-/ 1 
3 1 ‘  
3 3 
1 3 

tions are given by 

where the subscripts i and Q are functions of j as follows: 

Shape Functions Associated With Nodeless Variables (Bubble Modes) 
-. - . . . - - . . ~~ 

Elements SQ5 and SQ9 

These elements have one bubble mode given by 

/j = 5 for 
1 
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Elements SQ7 and SQ11 

These elements have t h e e  bubble modes given by 

(j = 5 for SQ7; j = 9 for SQ11) 

TRIANGULAR ELEMENTS 

The expressions of the shape functions for the different elements developed in this study 
in terms of the triangular (or area) coordinates 
sections. 

E I , E ~ , E ~  (ref. 44) are given in the following 

Linear Shape Functions 
. . . - ~ .  _ -  -. 

The shape functions for the linear approximations (element MT3, sketch (0) in terms of 
triangular coordinates are given by 

(j = 1 to  3) 

1 , O )  

Sketch (f) 

Quadratic Shape Functions 

The shape functions for the quadratic approximations (elements ST6 and MT6, sketch (g)) 
in triangular coordinates are 

Corner nodes 

Nj  = Ei(2Ei - 1) (j = 2i - 1 ;  i = 1 to 3 and is not summed) 
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Midside nodes 

N~ = 4ti ti+1 (j = 2i; i = 1 to 3 and is not summed; t4 = t l )  

Sketch (g) 

Cubic Shape Functions 
. 

The shape functions for the cubic approximations (element STlO, sketch (h)) in triangular 
coordinates are given by 

Corner nodes (nodes 1 ,  4 ,  7) 

Sketch (h) 

Boundary nodes 

\ 

N j - 9  - - ,ei ,ei+1(3,$i - 1) ( j  = 3i - 1; nodes 2, 5 ,  8) 
2 (i = 1 to 3 and is not 

summed; E4 = [I) 
j - 9  I 

j N - 5 ti+1(3ti+] - 1) ( j  = 3i; nodes 3,  6, 9) 

Interior node (node 10) 
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FORMULAS FOR COEFFICIENTS IN GOVERNING 

EQUATIONS FOR INDIVIDUAL ELEMENTS 

The expressions for the independent stiffness coefficients in equations (17) are given by 

The independent nonzero geometric stiffness coefficients are given by 

The independent nonzero consistent mass coefficients are given by 
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where 6.p is the Kronecker delta on a and p. 
The expressions for the “generalized” stiffness coefficients in equations ( 1  8) are given by 

Ni N j  dS2 
ij 

sa+6,p+6 = L ( e )  Aa3P3 

The consistent nodal load coefficients are given by 

P i  = 
Ni N j  pj d f l  
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In the above equations the contributions of the line integrals have been neglected for 
simplicity; K is a constant equal to  1 when CY f p and 1/2 when (Y = 0; the range of 
the lowercase Latin indices is 1 to  m, where m is the number of shape functions; the 
range of the Greek indices is 
range of the index. 

1,2; and a repeated index denotes summation over the full 

It should be mentioned that for elements with internal degrees of freedom (SQS, SQ7, 
SQ9, and S Q l l ) ,  the indices i j  in the expressions for Pk and P; were assumed to  have 
a range equal to the number of nodes in the element (Le., 4 for S Q S  and SQ7 elements, 
and 8 for So9 and SQll elements). 
of these elements and no loading was associated with internal degrees of freedom. 

This means that the loading was distributed on the nodes 
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P m 

Internal 

Per 
unknown 

D.O.F.a Number 
of 

nodes 
Approximation Element 

shape Formulation 

I 

TABLE 1 .- CHARACTERISTICS OF SHEAR-FLEXIBLE FINITE-ELEMENT MODELS 

USED IN PRESENT STUDY 

Designation Total number 
of D.o.F.~ 

Shell Plateb Name 
- 

Displacement Quadrilateral 4 Bilinear None 20 
1 25 

4 3 ' 35 
(stiffness) 

Symbol 

12 SQ4 
15 SQ5 
21 SQ7 

I 

8 1  Quadratic None 40 24 SQ8 0 

8 1 45 27 SQ9 4 
8 3 55 33 SQ11 b# 

I 12 Cubic None I 60 36 SQ12 0 
4 Product of first-order None , SQH D 

8o ~ 48 
Hermitian polynomials ! I 

Triangular 6 Quadratic None 30 18 ST6 ' 0 
10 Cubic 5 0  30 I STlO V 

- .  L - . ~ _ _ _  - 

4 Bilinear None 5 2  32 MQ4 a + 8 Quadratic None 104 64 MQ8 

Triangular 3 Linear None 39 24 MT3 A 
6 Quadratic 78 48 MT6 0 

c 

Mixed Quadrilateral I , 
. _ -  .... . . . . . . . .  + ................ . . .  . -  

-. ..... . .  .__I . . 

"Degrees of freedom. 
bDegenerate case of symmetrically laminated plates. 



TABLE 2.- BOUNDARY CONDITIONS USED IN PRESENT STUDY 

@ denotes suppressed degree of freedom; 1 ,  free (unrestrained] 

U 3-a 
0 

0 

1 

Boundary xa = Const 

' Simple support 

Clamped 
I 
I Line of symmetry 

@a 
0 1 0 

0 0 0 

1 0 1 

-- (b)  Force boundary conditions 
Boundary xa = Const %,a N 3-a,3-a N12 Ma,, M3-a, 3-a 

K~ = 1 for anisotropic shells and 0 for isotropic or orthotropic shells. a 

Clamped 1 1 1 

Free 0 1 0 

Line of symmetry 1 1 0 

M12 Qa Q3-a 

1 1 

0 1 

1 1 

1 1 1  a K a ,  

1 1 

0 0 

0 0 

a 
Ka 

1 

1 



P 
00 

TABLE 2.- Concluded 

(c) Boundary conditions for SQH element along edge x, = Const 
I I i 

fsplacement 

I ucY 

W 
! 

Simple support Clamped Line of symmetry 
I I 

0 1 

1 

t I 

1 

f a  a,f a3-af 
1 bK 1 

0 1 0 1 1 0 :  1 0 

' 1 '  0 
0 1 1  I 

0 1 
I 

a f stands for any of the generalized displacements 
b -  

ucY, w, $u 
K - 0 if force boundary conditions are imposed and 1 otherwise. 



TABLE 3.- EFFECT OF THICKNESS RATIO 11/a ON TOTAL 

AND TRANSVERSE SHEAR-STRAIN ENERGIES OF PLATES 

supported, nine-layered, square orthotropic plate subjected to 3 uniform pressure loading p,; U denotes total strain energy of 
plate and Usll denotes shear.-strain energy of plate 

h/a 

0.1 
.01 
.oo 1 

0.1256 26.055 
9.2980 .3577 

926.5 123 
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TABLE 4.- ERROR INDEX FOR GENERALlZED DISPLACEMENTS AND STRESS 

RESULTANTS OBTAINED BY DlFFERE,NT STIFFNESS AND MIXED MODELS 

supported, nine-layered. square orthotropic plate subjected to unifonn loading; 1 

2 x 3  2 12.75 
, 3 x 3  76.74 

4 x 4  35.60 

I 

36.37 28.64 8.73 2.19 1.62 0.84 274.9 1 179.87 23.23 
9.65 8.5 1 1.49 .37 .27 .13 69.89 75.5 1 6.42 
3.98 3.69 .46 .38 .08 .04 33.83 27.66 

I1 ( a )  ;1 = 0.1 

I Grid size I Values of E~ x 104 for 

2 X 2 242.91 74.48 70.81 17.94 2. I3 

3 x 3- 85.58 21.36 30.81 4.13 .37 
4 x 4  39.20 8.90 8.76 I .57 .90 

1.74 0.40 347.45 2 13.04 16.7 1 
.27 .05 116.89 77.46 6.94 
.07 .03 44.90 30.65 

I 
2 x 3  
3 x 3  
4 x 4  

1 

741.23 80.42 77.81 16.53 3.35 1.97 0.34 347.00 223.64 16.77 

84.05 23.33 33.95 3.6 1 .4 1 .3 1 .10 118.69 80.82 6.72 

38.05 9.72 9.63 1.19 .25 .08 .03 45.22 32.4 1 1 

I 

2. X 2 
3 x 3  
4 x 4  - -J 

12.62 
78.74 95.72 

612.41 58 1 S O  58 1.40 928.74 69.36 11.08 
289.46 277.50 277.48 586.6 1 22.53 2.43 .27 
162.5 I 157.00 156.99 422.0 1 10.0 1 .82 36.60 36.24 



TABLE 4.- Continued 

( a )  ConclLlded 

Grid size 
(quarter 

plate) 

values of E~ x 104 for - - 
SQ4 I SQS I SQ7 I ST6 I SQ8 I SQI2 SQH 1 MT3 MQ4 1 MT6 

2 x 2  
3 x 3  

, 4 x 4  

623.40 598.13 598.21 1032.73 82.22 ' 12.03 2.49 249.57 244.63 14.92 
303.48 293.98 293.98 713.88 27.20 I 2.78 .59 92.22 1 1  1.02 9.5 1 
173.43 168.99 168.99 543.92 12.09 1 .97 .21 42.99 43.97 

2 X 2 1333.68 1399.47 1399.36 1724.02 89.53 39.78 19.71 93.06 

3 x 3  602.92 608.8 1 608.47 1 183.26 29.53 11.48 7.83 68.81 

4 x 4  326.58 325.75 325.62 891.00 13.50 5.03 4.76 32.07 

67.58 28.57 
36.45 19.44 
16.32 

2 X 2 

3 x 3  
4 x 4  

1647.63 1741.03 1739.31 2800.71 110.86 ' 49.43 30.08 81.32 52.87 34.66 
745.45 755.56 754.88 1879.48 37.57 14.36 11.23 65.77 33.04 25.30 
403.70 403.65 403.45 1394.23 17.40 6.33 6.48 37.87 16.92 



TABLE 4.- Continued 

I1 (11) 3 = 0.01 

2 x 2  121.58 51.11 9.06 1.03 
3 x 3  39.58 10.5 1 .54 . I9  
4 x 4  806.46 416.1 1 406.94 14.22 3.37 .08 .os 

- 

Values of E~ x 104 for - 

3 19.96 172.69 27.40 
75.00 66.33 5.25 
37.48 25.62 

2 x 2  
3 x 3  
4 x 4  790.37 407.96 

1 f = $  

125.18 38.25 9.83 0.97 346.35 209.19 17.08 
42.43 8.37 .76 .78 108.3 1 73.64 5.67 

403.06 15.60 2.92 . I 3  . I 7  43.18 29.7 1 

134.82 

4 x 4  15.60 

38.48 10.27 2.2 1 365.39 227.74 18.37 
8.97 .83 1.51 112.04 78.84 5.87 
3.07 .15 .35 44.46 32.41 

345.94 

895.04 260.9 1 36.30 66.5 1 324.72 204.93 28.52 
558.53 89.50 5.83 17.91 75.99 91.84 20.42 

30.95 I .70 0.50 44.4 1 35.08 
- 

403.17 

1 2 x 2  
3 x 3  

1 4 X 4 840.00 I 450.88 



Grid size 
( q liar ter 

plate) 

values of ~f x 104 for 

SQ4 SQ5 SQ 7 ST6 SQ8 SQI2 SQH MT3 MQ4 MT6 

2 x 2  965.51 309.37 37.40 76.21 279.10 258.03 
089.66 1 17.78 9.40 22.58 99.72 114.38 

4 x 4  859.45 462.04 457.63 531.80 52.16 3.00 8.83 52.92 46.04 

33.35 
26.88 

2 x 2  106803.72 3674.66 , 1812.85 838.56 100.53 57.10 
3 x 3  77899.77 1514.77 329.35 227.36 80.35 37.56 
4 X 4 4989.61 14280.28 14775.74 60490.19 853.06 91.98 84.28 49.39 16.93 

60.86 
62.63 

180688.96 4254.03 1306.80 1387.85 97.70 27.27 
178160.13 1638.37 431.93 390.99 94.43 38.84 

130.24 148.15 59.50 19.4 1 

68.30 
78.48 



TABLE 5.- CONVERGENCE OF MINIMUM NONDIMENSIONAL FREQUENCIES X 
OBTAINED BY DIFFERENT FINITE-ELEMENT MODELS 

Grid size 
(quarter 

plate) 

supported, nine-layered, square orthotropic plate; 1 
Values of X: x 10-l for - 

Analytic 
s o h  tion 

SQ4 I ST6 I SQ8 1 SQ9 SQI I STlO SQ12 ! SQH I MT3 I MQ4 I MT6 (a) 

1 

2 x 2  
~ 3 x 3  

4 x 4  
5 x 5  

J 

1.827 1.633 1.627 1.627 1.626 1.625 1.625 1.625 1.587 1.619 1.625 1.62500 
1.714 1.627 1.675 1.625 1.625 1.620 1.624 (1.88913) 1 
1.675 1.626 1.623 1.625 
I .657 

2 x 2  
3 x 3  
4 x 4 
5 x 5  

I 

'Numbers i n  parentheses refer to classical-theory solutions (with both shear deformation and rotary inertia neglected). 

2.010 1.932 1.921 1.905 1.892 I .896 1.886 1.836 I .877 1.887 1.88576 
1.939 1.899 1.898 1.891 1.887 1.887 1.879 1.884 (1.88913) 

4.131 1.910 1.891 I .89 I 1.884 1.885 
3.558 I .888 
UL 



TABLE 6.- CONVERGENCE OF NONDIMENSIONAL FREQUENCIES Xm,n 
OBTAINED BY DIFFERENT STIFFNESS MODELS 

Simply supported, nine-layered, square orthotropic plate; 
r - 

(quarter 
plate) 

h (a) a = 0.1 

soultion ' 

SQH (a) SQ4 ST6 SQ8 SQ9 SQ11 STlO SQ12 

Grid . 

size 

8.111 6.100 i 6.094 6.088 ' 5.971 
6.989 5.972 5.959 5.959 ' 5.931 
6.519 5.934 j 

Values of Xm,-, for - 

5.937 5.933 5.930 5.92149 
5.923 5.922 (10.500) 

Analytic 

2 x 2  8.191 1 6.404 i 6.393 6.388 6.280 6.249 6.245 6.242 
3 x 3  7.208 6.281 , I 6.269 6.267 6.242 6.235 6.235 
4 x 4  6.78 1 6.250 6.345 6.245 

6.23387 
(12.9354) 

2 x 2  
3 x 3  
4 x 4  

2 x 2  
3 x 3  
4 x 4  

~ 

8.466 19 
8.517 8.484 8.479 8.488 ( 17.0022) 

11.380 9.197 9.052 8.694 8.559 8.595 8.768 8.478 
9.901 8.710 8.542 

8.558 8.487 8.483 

aNumbers in parentheses refer to classical-theory solutions (with both shear deformation and rotary inertia 
neglected). 



TABLE 6.- Concluded 

(1.)) ; = 0.0 1 

ST6 SQ8 

Values of Xm,* for - 

SQH , (a) SQ9 SQ11 STlO SQ12 

I I  Analytic 

1.324 1.278 
1.150 1.1 12 

4 x 4  2.885 1.087 1.070 

1.239 
1.110 1.072 1.042 (1.0500) 
1.070 

1.638 
1.383 

4 x 4  2.985 1.318 
.. 

1.530 1.499 1.390 1.303 1.305 1.292 1.2720 1 ' 
1.349 1.347 1.303 1.276 1.275 (1.29354) 
1.303 1.303 

aNumbers in parentheses refer to classical- theory solutions (with both shear deformation and rotary 
inertia neglected). 

4.146 

2.942 3.856 1.975 1.825 1.902 2.297 1.703 1.67351 
2.242 1.926 1.775 1.718 1.709 1.782 (1.70022) 
1.935 1.734 1.716 



TABLE 7.- ACCURACY OF VIBRATION FREQUENCIES OBTAINED 

BY SQ12 AND SQH ELEMENTS 

1 7 1  
1’3 
321 
373 

supported, two-layered orthotropic plate; 2 X 2 grid; 1 

1 .OS80 1.0.578 1.0578 (1.1244) 

} 4.8447 4.8405 4.8305 (6.5730) 

7.3000 6.8895 6.8757 (9.6664) 

h/a = 0.01 

c 

1,1 
1’3 
3,1 

Analytic solution 

h/a = 0.1 

1.1463 1.1303 1.1300 (1.1308) 

6.9498 6.73 19 (6.7644) } 7.1596 

3,3 I 15.7435 1 10.4152 I 10.1118 (10.1725) 1 
aNumbers in parentheses refer to classical-theory 

~~ 

solutions (with both shear deformation and rotary 
inertia neglected). 
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TABLE 8.- ACCURACY OF BUCKLING LOAD PARAMETER h 

OBTAINED BY SQH AND SQ12 ELEMENTS 

supported, nine-layered, square orthotropic plate subjected 1 to uniaxial edge compression; 
quarter of plate 

NY1 = - 1 ;  2 X 2 grid in one- 

s Q ~ a l u e s  c 4 a 2 [ E ~ h 3  for - - 
Analytic solution 

_ _ _ _ ~ ~  (a) -. 
27.012 27.014 27.0069 (36.1597) 
36.05 1 36.4 19 36.0365 (36.1597) 

.001 36.177 69.060 36.1585 (36.1597) 
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TABLE 9.- CONVERGENCE OF BUCKLING LOAD PARAMETER h 

Grid size L Values Of h a 2 / E ~ h 3  for - I saH Galerkin’s 
plate) method (ref. 35)a 

. .. - - .  . 

2 x 2  19.745 19.590 
3 x 3  19.194 
4 x 4  19.046 

OBTAINED BY SQH ELEMENTS 

[Simply supported, eight-layered, anisotropic plate with fiber 1 I orientation (90/0/-45/45/45/-45/0/90) subjected to  
1 combined compressive and shear edge loadings; 

!-- - . 1 I 

aBased on classical theory (with shear deformation 
neglected). 
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TABLE 10.- EFFECT OF THICKNESS RATIO li/a ON TOTAL AND TRANSVERSE 

SHEAR-STRAIN ENERGIES OF SHELLS 

po; U denotes total strain energy and Ush denotes shear-strain 
(R/a = 10, f/a = 0.0125) subjected to  uniform pressure loading 1 supported, nine-layered, orthotropic shallow spherical shells 

0.1246 25.85 12 
.2353 
.0014 

- - -  
.oo 1 15.6305 
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TABLE 1 1 .- CONVERGENCE OF NONDIMENSIONAL FREQUENCIES xnl,,, 
OBTAINED BY DIFFERENT STIFFNESS MODELS 

supported, nine-layered, orthotropic shallow 1 R f spherical shell ( 2- = I O .  ;1 = 0.0125); 

(qiiarter 
SQ9 SQI 1 STI 0 5q12 SQH 

Grid 
~ size 1 

solution ' 

(a) 

Values of XI,,,, X 10 for 

2 x 2  

3 x 3  
4 x 4  

Analytic 

1.039 1.633 1.632 1.631 1.63 1 1.63 1 1.630 1.630 

1.632 1.63 I 1.63 1 

1.630 ( 1.893) 

2 x 2  

3 x 3  

4 x 4  

6. 104 0.00 0 6.09 1 5.913 5.939 5.935 5.932 5.924 

5.914 5.00 1 5.96 1 
5.930 ( 10.496 

2 x 2  

3 x 3  

4 x 4  

1 in = 3. n = 1 

6.408 0.3 9 5 6.390 6.281 6.251 6.346 6.744 6.236 

0.283 6.21 1 0.270 

0.241 

2 x 2  0.20 1 9.055 8.695 8.560 8.595 8.770 8.478 

3 x 3  8.71 1 8.543 8.518 

4 x 4  8.487 

8.467 

(17.001) 



TABLE 11.- Concluded 

Grid 
size 

(quarter 
shell) ST6 SQ8 SQ9 SQ11 STlO 5q12 SQH 

Values of Xm,n x 102 for - 
Analytic 
solution 

(a) 

j 2 x 2  1.66 1 1.55 1 1.520 1.409 

~ 4 x 4  1.323 
3 x 3  1.403 1.368 1.367 

0.2538 0.2452 0.2443 0.2428 0.24 17 0.2419 0.24 12 
.2459 .2422 .2422 

.24 16 

1.292 

(1.3 13) 

0.241 1 

(0.2414) 

I m = 3 , n = 3  

2 x 2  1.350 1.303 1.265 1.182 1.094 1.099 1.084 
~ 3 x 3  1.173 1.136 1.134 
1 4 x 4  1.094 

1.063 

( 1.074) 

aNumbers in parentheses refer to classical-theory solution (with shear deformation and rotary inertia 
neglected). 

I 

' 2 x 2  2.955 3.862 
3 x 3  2.250 1.933 
4 x 4  1.741 

1.680 1.986 1.833 1.909 2.303 1.709 
1.783 



TABLE 12.- EIGENVALUES O F  THE STIFFNESS MATRICES FOR VARIOUS DISPLACEMENT MODELS 

flia = 0.0125: side length of element in  coordinate directions 
orientation ~451-45/45/-45/45/-45/45/-45/45); R/a = I O ;  1 shallow spherical shell with fiber 

ST6 SQ8 SQ9 SQ11 STIO SQ12 i SQH 

1.132 X 1.251 X 1.338 X 5.165 X 

~ P7 4.278 X 5.890 X 5.890 X i 5.183 X 

P6 i 
Straining Bmax 9.389 6.276 1.175 X I O 1  1.175 X I O ’  

Trace 2.170 X 10’ 3.010 X 10’ 4.245 X 10’ 5.162 X 10’ i 

1.681 X 1.250 X 5.094 X I O - ”  

1.549 X 3.969 X 7.870 X 

2.047 X I O 1  1.232 X 10’ 2.679 

6.522 X 10’ 8.614 X 10’ 1.233 X 10’ 



ch 
P 

Eigenvalue 
Mode 

i 

Values of for - 
- 

ST6 SQ8 SQ9 SQl I STlO SQl2 SQH , 

-1.195 x 10-15 

-3.290 X 

2.230 X 

3.447 x 10-16 
Rigid body 

8, 1-6.576 X 

/-3,674 X 

-1.789 X P; 
7.590 X 2.430 X 1 1.652 X ~ 1.852 X 6.582 X 7.642 X 

1.396 X IO-" 3.844 X 3.718 X 6.166 X 1.817 X 1.080 X 
4 

$7 

'6 

6.455 X 6.711 X 6.711 X 6.651 X 4.364 X 4.719 X 

Straining Emax 9.389 X I O - '  6.276 X 10-1 1.175 1.175 2.047 1.232 

Trace 2.169 3.007 4.241 5.158 6.516 8.608 

-3.381 X 

6.559 X 

2.532 X 

6.021 X 

-5.789 X 

-1.665 X 

-5.191 x 10-17 
7.140 X 

2.271 X 

9.589 X 

-9.607 X 

-5.841 X 10-l6 

1.327 X 

4.776 X 

2.091 X 

2.678 X I O - 1  

1.232 

-1.125 x 10-16 

E2 -5.080 x 10-17 
PI 

6.254 x 10-17 E5 
P;, 1.757 X 

-1.663 X 

-3.068 x 10-17 
- 1 . 1 1 1  x 10-17 
1.869 X 

9.108 X 

2.191 X 

-6.682 X 

-9.103 x 10-19 
2.524 x 10-17 
1.317 X 

3.705 X 

3.847 X 

= 0.001 

-1.006 X 

-5.557 x 10-17 

1.233 x 10-17 
-9.370 X 

1.326 X 

4.226 X 

-3.035 X 

-2.039 X 

-2.289 x 10-17 
-1.784 x 10-17 
2.690 X 

1.089 X 

-3.940 X -2.079 X 

-2.291 X ,-1.714 X 

-3.775 x 10-17 -3.932 x 10-17 
3.885 X -1.529 X I O W i 8  

7.217 X 9.669 X 

1.327 X 1.986 X 

5.995 X lo-'' 1.485 X IO-" 1.485 X IO-" 9.349 X 4.437 X I O - ' '  4.730 X 7.273 X 

Straining 9.389 X 6.7-76 X IO-* 1.175 X I O - '  1.175 X IO- '  2.047 X I O - '  1.232 X 10-1 2.679 X 
E7 

Trace 2.167 X I O - '  3.007 X I O - '  4.241 X I O - '  5.158 X I O - '  6.516 X I O - '  8.608 X I O - '  1.232 X 10-1 



TABLE 13.- COMPARISON OF SOLUTIONS OBTAINED BY ISOPARAMETRIC SQ12 

degrees of 
freedom 

525 

640 

920 

ELEMENTS WITH THOSE OF PREVIOUS INVESTIGATORS 

kircular cylindrical shell with a circular cutout loaded in tension 3 

Membrane 

3.643 

3.691 

3.7 12 

L 

Grid 

4 x 4  

5 x 4  

5 x 6  

8 x 6  

Finite differences 
(ref. 40)a 

Finite elements 
(ref. 41)a 

(ref. 391a 
Analytic solution 

Number of 

I 

1415 3.666 

3.603 
753 I 

I 

3.690 

3.658 
367 I 

1 

- 

Membrane + 
bending 

4.268 

4.252 

4.257 

4.223 

4.096 

4.249 

bE/(uo2h3d X 

(b) - 
4.73495 1 

4.735373 

4.7 1 1623 

4.724903 

4.729269 

4.180 L 
aBased on the classical theory (with shear deformation neglected). 
bStrain energy in one-quarter of the shell. 
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TABLE 14.- ACCURACY OF VIBRATION FREQUENCIES OBTAINED 

BY SQH ELEMENTS 

Simply supported, two-layered, orthotropic circular 
- with h/R = 0.05, R/L1 = 0.5; Xm,-, - c 

m,n 

Values of I 
SQH element 

Grid l a  Grid 2b 

1,2 0.5512 
1,4 .7932 
3,2 1.7173 
3,4 , 1.4143 

I 

___ _ _ _ _ _  
for - 

xm,n .. j Analytic 
solution 

(c) 
0.5487 (0.5494) 

.6356 ( .6473) 
1.7121 (1.7237) 

~- I 
- _ - -  

0.6396 
- - - -  

1.3390 
- .. 

1 1.3317 (1.3581) 
.- 

aGrid 1: 2 X 2 in shell octant. 
bGrid 2: 2 X 2 (2 elements in one-eighth of 

‘Numbers in parentheses refer to  classical-theory 
the circumference). 

solution (with both shear deformation and rotary inertia 
neglected). 
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x1 

N1 1 
LL 

Figure  1. - Shell element and s ign convention. 

M 2 1  

1' 1' N 1 ' 2 '  

xl' u1 XI1  'U l '  

F igu re  2.- S t r e s s  resul tants  and displacements a t  a curved boundary. 
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I' 
--- ....... 

Figure  3. - Charac ter i s t ics  of laminated graphite-epoxy plates  used i n  present  study. 
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Figure 4.- Convergence of s t r e s s  resultants and generalized displacements with grid refinement. Simply supported, 
nine-layered, orthotropic square plate with = 0.1. 
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F igu re  5.- Convergence of w and MI1 obtained by different st iffness and mixed 
Simply supported,  nine- models with increasing number of deg rees  of f reedom.  

layered,  orthotropic squa re  plate with : = 0.1 and 0.01. 
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F igure  6.- Effect of h/a on convergence of bending-moment resultant MI1 and t r ansve r se  displacement w 
obtained by different stiffness and mixed models. Simply supported, nine-layered, orthotropic squa re  plate. 
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projects, monographs, data compilations, 
handbooks, sourcebooks, and special 
bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other- non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and 
Technology Surveys. 

Details on the availabilify of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE 

N A T I O N A L  A E R O N A U T I C S  A N D  SPACE A D M I N I S T R A T I O N  
Washington, D.C. 20546 


